Buscar en Gazafatonario IT

Mostrando las entradas con la etiqueta Colabora. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Colabora. Mostrar todas las entradas

miércoles, agosto 27, 2025

Pequeñas leyes, grandes transformaciones

 Pequeñas leyes, grandes transformaciones

O de cómo aplicar “Las pequeñas leyes de la vida” a cambios ágiles, digitales y con IA

El despliegue de software en horarios no aptos para personas

Para saber qué y cómo cambiar hay que conocer y entender lo que nunca cambia. Ese es el punto de partida. Nos obsesionamos con anticipar el futuro, con seguir la última moda tecnológica o el marco de trabajo recién publicado. Pero rara vez nos detenemos a mirar lo que permanece, lo que resiste, lo que no se mueve, aunque el mundo gire más rápido. Yo suelo decir que estoy en el oficio del cambio organizacional. Pero, en el fondo, lo que he hecho es aprender cada día a escuchar lo que no cambia en las personas, en los equipos y en las organizaciones, y usarlo como ancla para que el cambio sea posible.

El libro “Lo que nunca cambia” de Morgan Housel me recordó, con anécdotas simples, que las pequeñas leyes de la vida gobiernan más de lo que pensamos. Lo menciono porque he visto que eso mismo ocurre en las transformaciones empresariales: cambian las herramientas, cambian los discursos, cambian los consultores. Pero lo humano sigue ahí, con sus miedos, sus deseos y sus incentivos. Y si olvidamos eso, lo digital y lo ágil y, más recientemente, la IA se vuelven maquillaje pasajero.

Dejé de desarrollar software hace más de dos décadas, pero los problemas más frecuentes en tecnología de entonces venían de desplegar sistemas en unos días y en unas horas inverosímiles, como un viernes por la tarde o un domingo a las 5 a. m. Hoy, con nubes más rápidas y metodologías más sofisticadas, la historia se repite: seguimos sufriendo por desplegar en esas fechas y horarios inauditos para nuestra humanidad. Cambian los escenarios, pero no cambian los patrones. Lo que nunca cambia es más fuerte que lo que creemos controlar.

Por eso he convertido esto de entender lo que nunca cambia en un mantra y en las empresas donde he logrado que esto se acepte como una realidad, el cambio organizacional dejó de ser una carrera por inventar lo que sigue y se convirtió en un ejercicio de diseñar con base en lo que siempre estará ahí. Una empresa que entiende sus constantes humanas no necesita adivinar el futuro, porque sabe que, pase lo que pase, la gente buscará seguridad, autonomía, reconocimiento, sentido y progreso.

Leyes pequeñas que sostienen cambios grandes

Antes de hablar de prácticas, te conviene aceptar algo: las grandes transformaciones no se sostienen en estrategias grandilocuentes, mucho menos en presentaciones coloridas ante la alta dirección, sino en leyes pequeñas que se cumplen día tras día. He estado en ambos extremos. No se trata de discursos inspiradores un jueves por la mañana que olvidamos al lunes siguiente, sino de verdades sencillas que marcan el pulso de cualquier cambio. Son esas pequeñas leyes las que me sirven de brújula cada vez que acompaño a una organización. Cuando logro que sean visibles, todo lo demás fluye con más naturalidad.

La gente sigue siendo gente. No sirve de mucho pedir mentalidad ágil si el sistema invita a trabajar de forma lenta y burocrática. Es más fácil que las personas cambien cuando el entorno les facilita hacerlo. Si trabajar de manera ágil reduce esfuerzo, reduce conflictos y mejora resultados, entonces lo ágil será la primera opción, no un discurso motivacional.

El riesgo que derrumba no siempre se ve. He trabajado en cinco décadas distintas. Y, a propósito de lo que nunca cambia, he visto que los grandes problemas rara vez vienen de una falla monumental y visible. Llegan como una suma de descuidos: una alerta silenciada, un proceso sin dueño, una validación ignorada. Con inteligencia artificial es lo mismo, basta un pequeño error en la formulación de un pedido para que el sistema alucine respuestas y cause daños serios. La prevención está en mirar donde casi nunca se mira.

Lo que se acumula, pesa. Las mejoras pequeñas, hechas con constancia, transforman una organización. Los descuidos pequeños, tolerados por costumbre, también lo hacen. Nada crece en línea recta: todo se compone y se multiplica. De ahí la importancia de medir ritmos, no promedios. De tratar la transformación como un jardín que necesita riego, poda y paciencia.

Las historias mandan más que los números. Un comité puede ignorar un análisis financiero impecable, pero no puede resistirse a la historia de una persona enfrentando a diario la misma frustración. Los números convencen, pero las historias movilizan. Cada transformación necesita relatos breves, claros, capaces de mostrar quién se beneficia y cómo se siente cuando algo mejora.

Un colega me contó hace poco que un comité le negó presupuesto para mejorar un sistema, porque en las cifras no veían retorno. Un mes después volvió con un video: una agente de soporte repitiendo la misma acción manual cuarenta veces al día. La petición era la misma, pero la historia distinta. Y esta vez, aprobaron de inmediato. He estado allí.

Crecer antes de tiempo reduce lo que importa. Nada destruye más un proyecto que escalarlo demasiado pronto. Lo aprendimos con sangre tratando de “escalar ágil” y lo estamos repitiendo con IA generativa: lanzar una solución inmadura a toda la organización puede ser un suicidio. El cambio responsable necesita ensayos pequeños, pilotos controlados, pruebas que permitan aprender sin arrasar con la confianza. Y todo ello toma tiempo.

Las cicatrices gobiernan el presupuesto. Una organización que ha sufrido un susto fuerte nunca vuelve a ser la misma. La memoria emocional pesa más que cualquier discurso. No sirve tratar de borrarla: hay que diseñar con ella. Crear espacios seguros para probar, compromisos reversibles y planes de contingencia que devuelvan tranquilidad.

Construir sobre lo que no cambia. Este es el quid de la cuestión. Los clientes siempre querrán rapidez, claridad, precio justo y confianza. Los empleados siempre buscarán autonomía, maestría y propósito. Invertir en estas constantes es más poderoso que perseguir modas pasajeras. La agilidad pasará, pero la colaboración, la entrega temprana y frecuente, la reflexión y la mejora continua se quedan. Los modelos de IA pasarán, pero los datos limpios, la transparencia y la seguridad se quedan.

La variación da fuerza. Nadie sabe cuál experimento será el ganador. La única estrategia sensata es probar mucho, a bajo costo, y cerrar rápido lo que no funciona. Esparcir semillas y preparar el suelo: algunas no crecerán, otras se convertirán en árboles.

Preguntar siempre: ¿y luego qué? Cada decisión trae consecuencias directas e indirectas. Lo sabemos de sobra: un bot puede reducir a la mitad el tiempo de respuesta, pero aumentar las llamadas repetidas porque las respuestas son incompletas. Antes de celebrar un resultado, hay que preguntarse qué efecto oculto vendrá después.

Un mapa para sostener transformaciones


Una transformación real no depende de planes perfectos. Se construye con equipos enfocados, con ritmos cortos y sostenibles, con datos que muestran la realidad completa, con reglas pocas y claras. Se construye midiendo lo esencial y aceptando que fallar barato es mejor que acertar tarde. Y, sobre todo, se construye diseñando para lo que nunca cambia.

Para mí, un mapa de transformación comienza con algo sencillo: definir con claridad el propósito, y narrarlo en palabras que cualquiera en la organización pueda repetir sin confundirse. Luego, dar a los equipos foco y autonomía real, con límites claros que eviten la dispersión. Después, sincronizar ritmos, cadencias y compromisos, de forma que la empresa respire al mismo tiempo y no como un conjunto de islas.

Ese mapa también incluye algo más profundo: una manera distinta de gobernar. No con controles asfixiantes ni con promesas grandiosas, sino con reglas mínimas, con decisiones rápidas en lo reversible y con más cuidado en lo que deja cicatrices. Y, por encima de todo, con incentivos alineados: porque si los premios contradicen los discursos, la cultura se convierte en hipocresía.

Y hoy por hoy, un mapa de transformación necesita la humildad de los líderes para aceptar que la inteligencia artificial es herramienta y no tótem. Muy poderosa, pero herramienta, al fin y al cabo. Sirve para aliviar dolores y multiplicar capacidades, pero no para tapar vacíos de liderazgo ni excusar la falta de estrategia. La IA es poderosa cuando se usa con datos confiables, con transparencia y con límites claros.

Mi llamado a la acción

Yo no creo que las organizaciones sobrevivan por adivinar lo que viene. Creo que sobreviven porque responden mejor cuando lo inesperado golpea. Cambiar con rapidez es valioso, pero diseñar sobre lo que nunca cambia es lo que sostiene. Ese es el verdadero oficio del cambio: aprender a escuchar lo que no se mueve, y desde ahí, moverse mejor.

Así que mi invitación es simple: miren de frente a sus constantes, háganlas visibles, conviértanlas en cimiento. Y luego, construyan cambios encima, sabiendo que, pase lo que pase, hay un suelo firme que no se derrumba. Ese es el cambio que vale la pena.

Es definitivo: el cambio nos excita, lo constante nos sostiene. Quien diseña solo para lo primero vuela; quien diseña también para lo segundo aterriza.

martes, agosto 12, 2025

Cuando Scrum se convirtió en el chico malo de la organización


Alguna vez fue el niño mimado. El chico dorado de la agilidad. El marco de trabajo que prometía orden en el caos, foco en el cliente y resultados rápidos. Pero hoy, en muchas organizaciones, Scrum es el culpable favorito. El chivo expiatorio. El "chico malo" al que todos miran con desconfianza cuando las cosas no salen como se esperaban.

En las comunidades de practicantes ágiles y en los foros de discusión se  le “tira toda el agua sucia”, se refieren a Scrum como la mayor estafa metodológica de la historia del desarrollo de software. Se habla de que no solo secuestró el concepto de agilidad, sino que lo violó, lo desfiguró y nos lo devolvió como un frankenstein metodológico que ni siquiera sus creadores reconocerían.

¿Qué pasó?

Scrum nació con buenas intenciones. Como ese nuevo colaborador que llega con ideas frescas, ganas de trabajar en equipo y una pasión por mejorar. Su estructura es simple: responsabilidades claras, eventos bien definidos, entregables tangibles. Parece el recetario ideal para una buena cocina organizacional.

Pero, como con cualquier receta, si los ingredientes son malos, si el chef improvisa o si los comensales no tienen hambre de cambio, el plato no sale bien. Scrum, por sí solo, no es una solución mágica. Y allí es donde empiezan los problemas.

"Scrum no sirve"... ¿seguro?

"Scrum no sirve aquí", dicen algunos gerentes. "Lo intentamos y no funcionó", dicen los equipos. Pero lo que muchas veces no se dice es que:

  • Nunca hubo un Product Owner real, con poder de decisión. O era un gerente de proyecto enmascarado y con mucho poder. O simplemente era un ilustre sin presencia.
  • El Scrum Master era otro tipo de jefe de proyecto disfrazado. Ni hablar de las empresas donde por decreto, de un día para otro, sin mayor preámbulo, nombraban SM a todos los PM.
  • El equipo tenía que seguir haciendo mantenimiento, soporte, incidentes y proyectos a la vez.
  • Las retrospectivas eran reuniones de quejas sin acción.
  • Las revisiones de sprint eran presentaciones de PowerPoint sobre el “estado” del proyecto.
  • El product backlog era una lista de tareas heredadas, no un producto con visión.

Y esas son algunas de las cosas visibles que puedo contar sin que me caigan encima los absurdos de los acuerdos de confidencialidad. Pero la conclusión de todo ello sí es inevitable: como industria, elegimos la comodidad de las recetas sobre la dureza del pensamiento crítico, preferimos comprar certificaciones que desarrollar criterio, optamos por seguir mapas en lugar de aprender a navegar.

Lo diré de otra manera: aplicamos un Scrum “de teatro”. Un simulacro. Como cuando se instala un software de contabilidad pero nadie registra los gastos. El marco estaba, pero no la intención ni la disciplina. Predominaron nuestros egos, nuestra resistencia al cambio, nuestra incapacidad para colaborar genuinamente. Scrum simplemente expuso nuestras heridas más profundas y, en lugar de sanarlas, las infectamos con más burocracia disfrazada de agilidad.

¿Falló Scrum o fallamos nosotros? O la traición del factor humano

Scrum no falló. Lo que falló fue la implementación, la interpretación y, muchas veces, la cultura. Implementar Scrum sin entender su filosofía es como comprarse una bicicleta de montaña para ir a la oficina con tacones o corbata. No es que la bicicleta sea mala. Está mal usada.

Scrum exige compromiso, transparencia, inspección y adaptación. Y eso duele. Duele para los que prefieren el control jerárquico. Duele para quienes temen la retroalimentación real. Duele para quienes quieren resultados sin cambiar comportamientos. Duele para quienes quieren seguir usando Jira como si fuera una máquina de crear agilidad. Duele para quienes convirtieron las reuniones diarias en reportes de estado glorificados.

Muchas empresas cayeron en la trampa de "agilizar" sin transformar. Adoptaron Scrum como si fuera una nueva metodología, no un nuevo paradigma. Siguieron funcionando igual, solo que ahora con "Daily", "Sprint Review" y post-its de colores. Pero el miedo al error seguía. Y el castigo al fracaso. Y la falta de visión de producto.

¿Y entonces, cómo hacer que Scrum funcione?

Con el tiempo aprendí que no se trata de "aplicar Scrum". Se trata de vivirlo. De entender sus principios y adaptarlos con madurez. No te voy a dar soluciones inentendibles de consultoría, te dejaré algunas claves prácticas, cosas que puedes empezar a hacer ya mismo si tienes la convicción, la entereza y, claro, la autoridad para hacerlo:

  1. Ten un verdadero Product Owner: Con foco, con visión, con capacidad de decir "no". Sin eso, el backlog es solo una lista de deseos sin rumbo.
  2. Empodera al equipo: Scrum no es para robots ejecutores. Es para equipos que piensan, deciden, construyen. Deja que respiren.
  3. Invierte en un Scrum Master real: No un jefe encubierto, ni un facilitador que toma notas. Un verdadero agente de cambio que desafíe al status quo.
  4. Haz del Sprint Review un momento de verdad: Invita al cliente. Muestra avances. Recoge feedback real. No te escondas detrás de informes.
  5. Que la retrospectiva no sea un ritual vacío: Cambien cosas. Experimenten. Fallar está bien si se aprende rápido.
  6. Mide lo que importa: No cuentes historias por contar. Mide valor entregado, impacto, aprendizaje. No velocidad. No "burn down".
  7. Haz menos, pero mejor: La trampa de la multitarea es la asesina del enfoque. Scrum te da ritmo. Respétalo.

Además, Scrum supone que sabes hacer bien lo que haces usando Scrum. Practica y promulga a los cuatro vientos la excelencia técnica, la reflexión (inspección y adaptación) y el mejoramiento continuo. No persigas la metodología perfecta, lo que debes hacer es construir mejores equipos, mejores culturas, mejores personas. Hemos sido como alcohólicos buscando la bebida perfecta cuando el problema no era qué tomábamos, sino que estábamos tomando.

Mi llamado a la acción

Necesitamos entender que el método, Scrum o cualquier otro, es solo una herramienta, no el fin en sí mismo. Prioricemos resultados sobre rituales. Sigamos las reglas, pero aprendamos a romperlas inteligentemente. Desarrollemos hábitos profesionales sólidos: comunicación honesta, colaboración genuina y entrega continua de valor. Con estos hábitos, cualquier marco de trabajo, incluyendo Scrum, funciona. Sin ellos, ni siquiera el más perfecto de los métodos nos salvará.

Scrum no está muerto. Está evolucionando. Y necesita aliados que entiendan que su poder no está en los eventos, sino en los principios. Scrum se convirtió en el "chico malo" porque lo empujamos a ese papel. Porque lo implementamos sin convicción. Porque quisimos que resolviera problemas que en realidad eran culturales, no metodológicos. Dejemos de usarlo como escudo y empecemos a usarlo como espejo.

El fracaso de muchas personas, equipos y organizaciones con Scrum no fue técnico, fue emocional. No entendimos que la agilidad no era una herramienta, era un espejo. Y muchos no estaban listos para mirarse. ¿Lo estás?

jueves, julio 31, 2025

Cuando la agilidad se "quema": las verdades incómodas que Alistair nos regaló

Alistair compartiendo historias. Fotos de Rose Restrepo.

Alistair Cockburn es uno de los 17 firmantes del Manifiesto Ágil. Conocí vagamente su método Crystal Clear, pero muy profundamente su enfoque con los casos de uso, base de mi trabajo durante casi una década y que a la postre me sirvió para publicar mi segundo tomo de Asuntos de la Ingeniería de Software. Es autor de sendos libros, autor de El corazón de la agilidad (Heart of Agile) y en años recientes tuve la oportunidad de colaborar con él en la traducción al español de algunas de sus conferencias alrededor del mundo.

A Alistair le gusta viajar y pisa tierras suramericanas cada vez que puede. Ahora incluso tiene más razones para ello, aunque no me corresponde decirlo. Esta vez, en medio de sus vacaciones, tuvimos la increíble oportunidad de conversar con él en una sesión extraordinaria: "Respondiendo preguntas con historias" con Alistair Cockburn, una iniciativa de las Comunidades Ágiles Colombia y el Corazón de la Agilidad Latinoamérica que lideró nuestra amiga Rose Restrepo.

Alistair no llegó con PowerPoints bonitos ni con frameworks de moda. Llegó con historias crudas y verdades que duelen. Y la primera bomba que soltó fue devastadora: la agilidad como término está "quemada". Pero la expresión clave allí es “como término”. Entraré en detalle de esta y algunas otras cosas que mencionó. Seguramente algunos asuntos quedarán por fuera de este resumen, pero al final, enumeraré las conclusiones que leí esa noche al cierre de la sesión.

La dura realidad de una palabra prostituida

¿Saben qué significa que algo esté "quemado"? Significa que ha sido usado tanto para la autopromoción que perdió su esencia real. Cuántas veces hemos visto consultores, gerentes y "expertos" vendiendo agilidad como si fuera el último iPhone, prometiendo transformaciones mágicas que nunca llegan.

Pero aquí viene lo brutal: Cockburn admite que no han encontrado una palabra mejor. Estamos atrapados con un término degradado porque, irónicamente, sigue siendo la mejor descripción de lo que realmente necesitamos.

La solución que propone es elegantemente simple y dolorosamente práctica: el Corazón de la Agilidad reducido a cuatro palabras que cualquier niño puede entender: "Colabora", "Entrega", "Reflexiona" y "Mejora". No necesitas certificaciones costosas para esto. No necesitas frameworks complejos. Solo necesitas estas cuatro acciones, punto.

Para saber más sobre el Corazón de la agilidad, puedes leer mi artículo en: Mis notas sobre el Corazón de la Agilidad - Gazafatonario IT.

La inteligencia artificial: el nuevo elefante en la sala

Y entonces llegamos al tema que nos tiene a todos despiertos por las noches: la IA. Cockburn no se anda con rodeos: "la IA cambiará todos los roles". Project managers, Scrum Masters, coaches, programadores, testers. Todos. Sin excepción.

Pero aquí está la parte que reafirma lo que ya hemos hablado en distintos foros: no se trata de si la IA nos va a reemplazar. Se trata de cómo van a cambiar las conversaciones dentro de las empresas. Porque ahora tenemos una "tercera persona" en nuestras colaboraciones: el ChatGPT, el asistente IA, la máquina que puede generar código en segundos.

El problema es que esos segundos se convierten en horas o días cuando intentas conectar ese código con la realidad: bases de datos, sistemas legados, integraciones que son más frágiles que una relación de adolescentes. La IA no es magia, es un asistente muy sofisticado que puede "inventar cosas" si no tienes cuidado.

A propósito, no me gustó que haya usado la palabra “persona” para referirse a la IA, pero quizás es asunto de su español no tan perfecto, aunque lo hace muy bien, así que no le reclamé nada en ese sentido.

La métrica que nadie quiere medir (pero debería)

Aquí viene una de las revelaciones más impactantes de toda la sesión. Alistair, que empezó como metodólogo en 1991, nos suelta esta bomba: es imposible medir la productividad de un programador.

¿Por qué? Porque somos demasiado inteligentes para nuestro propio bien. Cualquier métrica que inventes, nosotros encontraremos la manera de "hacer trampa" con ella. ¿Líneas de código? ¿Puntos de historia? ¿Velocidad? Todo es manipulable. Y estoy siendo literal en buena parte de este artículo con los términos y expresiones que él usó, algunas incluso en inglés.

Pero existe UNA métrica que sí importa, una que puede destruir cualquier productividad sin importar qué tan "ágil" seas: las interrupciones por día. Con solo tres interrupciones diarias, tu productividad se va a cero. Y aquí está el problema: nadie quiere medir esto porque significa admitir que nuestras organizaciones están diseñadas para matar la productividad.

Así que te reto, a ti, gerente de proyecto, jefe, Scrum Master, facilitador, coordinador: mide las interrupciones por día a tu equipo y cuéntanos cómo te va. Si el asunto es grave, siempre puedes leer mi artículo illegitimus non-interruptus - Gazafatonario IT.

La fusión de roles: cuando menos es más

Una de las preguntas más prácticas de la sesión fue sobre la fusión de roles: ¿puede una persona ser Product Owner, Product Manager y Project Manager al mismo tiempo? La respuesta de Cockburn fue refrescantemente directa: "No veo ningún problema".

En empresas pequeñas de tres a cinco personas, esta fusión no solo es normal, es necesaria. El purismo de roles separados es un lujo que muchas organizaciones no pueden permitirse. Y honestamente, ¿no es mejor tener una persona que entiende el panorama completo que tres personas que se pasan el día coordinándose?

El Manifiesto Ágil: perfecto pero forzado

Aquí viene otra verdad incómoda: el Manifiesto Ágil fue diseñado para equipos y proyectos, no para grandes empresas. Cuando intentamos forzar sus principios a organizaciones masivas, estamos pidiendo problemas.

Los valores del manifiesto siguen siendo "perfectos, nada cambia", según Cockburn. Pero aplicarlos a una empresa de 10,000 empleados es como usar un bisturí para cortar un árbol: la herramienta es excelente, pero no para ese trabajo.

Micromejoras: la revolución silenciosa

Para las organizaciones tradicionales y estructuradas, Cockburn propone algo que suena aburrido pero es revolucionario: micromejoras continuas y pequeñas. No puedes cambiar una cultura organizacional de golpe, pero puedes mejorar la calidad de una conversación, de una reunión, de una interacción a la vez.

Es menos sexy que una "transformación ágil" completa, pero es infinitamente más real y sostenible. En este sentido, puedes leer mi artículo Microhábitos para macroimpactos: cómo los hábitos atómicos contribuyen a la sostenibilidad de la transformación organizacional – Lucho Salazar e incluso descargar una presentación que hice algún tiempo.

El Project Manager que sobrevive

En este nuevo mundo híbrido, el gerente de proyecto que sobrevive no es el que controla presupuestos o reportes. Es el que se enfoca en tres cosas fundamentales: bloquear interrupciones para el equipo, garantizar la calidad de la comunidad (comunicación, confianza, educación) y publicar el proyecto a los dirigentes.

La función más importante no es la planificación ni el control. Es la calidad de la comunidad dentro del equipo. Porque sin confianza, sin comunicación real, sin educación continua, no hay framework que te salve. Sin confianza no hay comunicación, sin comunicación nunca llegaremos al “Colabora” del Corazón de la Agilidad.

Mi reflexión final

Al final de esta sesión extraordinaria, una verdad emerge con claridad brutal: la agilidad real no está en los frameworks ni en las herramientas de moda. Está en la calidad de nuestras conversaciones, en nuestra capacidad de adaptarnos sin perder la humanidad, y en nuestro coraje para admitir que la mayoría de lo que llamamos "ágil" es solo teatro corporativo.

Y lo que yo derivo de todo esto: la IA cambiará todos los roles, pero si no arreglamos primero la calidad de nuestras conversaciones humanas, solo automatizaremos la mediocridad. Y eso, mis amigos, no es agilidad... es tragedia con mejor tecnología.

¡Gracias, Alistair por una gran conversación!

 

Los asistentes deleitándonos con las historias de Alistair. Foto de Dennis Arias.

Suplemento: Notas de Lucho sobre “Respondiendo preguntas con historias, por Alistair”

Sobre “la agilidad murió”

Más allá de agile no hay algo mejor. “Dime si hay algo mejor”.

Sobre IA

¿Quién firma las decisiones?

La IA cambiará los roles, pero ¿cómo se cambian las conversaciones en la empresa?

La IA hace instantánea la agilidad.

Sobre gestión híbrida de proyectos

¿Qué hace o puede hacer un jefe de proyectos sin burocracia?

·       Bloquear interrupciones al equipo

·       Garantizar la calidad de la comunidad (el equipo y su entorno)

·       Publicar el proyecto a los dirigentes.

Sobre varios roles en una sola persona

Product Owner + Product Manager + Project Manager

¡Es normal!

Sobre el Manifiesto Ágil

Fue un resultado orgánico.

Si una persona más o una persona menos hubiese participado el resultado hubiera sido completamente distinto.

Fue una elección por unanimidad.

Había muchas cuestiones, muchos valores, ¡elegimos cuatro! “Puedo vivir con estos cuatro valores”.

Un ejercicio interesante es lograr eso en tu propio equipo.

El Manifiesto fue elaborado para equipos y proyectos. No para empresas, sobre todo grandes.

Sobre Scrum

El Scrum original es ágil. Scrum es un espejo.

Las personas no quieren verse en el espejo porque ven sus problemas. Scrum no propone soluciones.

Sobre empresas o estructuras liquidas

No es posible ser “líquido” en ciertos entornos.

Ser líquido puede ser un impedimento para la agilidad.

Sobre productividad y métricas

Si no miden interrupciones por día a un programador, no tienen nada.

Porque las interrupciones (dos o tres) pueden bajar considerablemente la productividad.

Sobre otros aspectos

Los gerentes quieren dinero e influencia.

Usaron la agilidad para subir sus bonos.

Con la IA es lo mismo.

Lo que puedes hacer es mejorar la calidad de vida en tu entorno.


Podcast resumen

Aquí puedes escuchar este breve podcast con el resumen de todo lo anterior.

domingo, mayo 25, 2025

La ciencia del progreso: Navegando el cambio con métricas, OKR, KPI y modelos de madurez

 La ciencia del progreso: Navegando el cambio con métricas, OKR, KPI y modelos de madurez


Hoy por hoy, los equipos digitales avanzan a velocidad “cuántica” y están inmersos en escenarios donde no medir es navegar sin instrumentos. Pero medir por medir, sin dirección ni propósito, es igual de peligroso. Las métricas, los OKR (Objectives and Key Results), los KPI (Key Performance Indicators) y los modelos de madurez no son solo herramientas: son sistemas vivos que nos ayudan a hacer visibles los patrones del progreso.

Estas herramientas se articulan y complementan y pueden usarse de forma estratégica para potenciar procesos de mejora continua, impulsar la innovación y alinear a toda la organización hacia un propósito común. Mi primer mensaje aquí es “mide para mejorar”, incluso voy a ir más allá: “mide solo para mejorar”. Axiomático.

Métricas que importan: Menos es más (si mides lo correcto)

Las métricas no son todas iguales. Algunas reflejan directamente el estado del negocio, otras el impacto real del producto sobre los usuarios, y otras el funcionamiento interno del equipo de trabajo (métricas de proceso o flujo). Entender esta diferencia es clave para seleccionar aquellas métricas que realmente generen valor.

Ejemplos prácticos:

  • Métrica de negocio: Tasa mensual de retención de clientes.
  • Métrica de producto: Porcentaje de usuarios activos que utilizan una nueva funcionalidad.
  • Métrica de equipo: Tiempo promedio desde que se inicia hasta que se entrega una funcionalidad (lead time).

Criterios para buenas métricas:

  • Deben influir activamente en la toma de decisiones estratégicas o tácticas.
  • Son consistentes y comparables a lo largo del tiempo.
  • Pueden ser influenciadas o gestionadas directamente por los equipos responsables.

Es definitivo, una métrica sin contexto es como una fiebre sin diagnóstico: te alarma, pero no sabes qué hacer.

KPI y OKR: herramientas complementarias, no intercambiables

A grandes rasgos, OKR (Objectives & Key Results) es un marco de fijación de metas que combina un objetivo cualitativo (“qué queremos lograr”) con resultados clave cuantitativos (“cómo mediremos el progreso”). Su propósito es impulsar la ambición y la innovación, alineando a la organización en torno a retos inspiradores y medibles.

Entre tanto los KPI (Key Performance Indicators) son métricas operativas que siguen el desempeño de procesos críticos y el estado de salud del negocio y su propósito esmonitorear y mantener resultados clave del día a día, garantizando estabilidad y eficiencia.

En otras palabras, los KPI son indicadores de salud. Los OKR son marcos de ambición. Mientras que los KPI están diseñados para vigilar, en el sentido de gestionar, el desempeño continuo y asegurar la estabilidad operativa, los OKR están orientados a provocar el cambio, establecer metas visionarias y fomentar la alineación estratégica.

Por ejemplo, si diriges un restaurante, un KPI puede ser “Tasa de ocupación del 80 %” y un OKR sería: “Objetivo: Convertirnos en el restaurante más recomendado de la zona. Resultado clave: Aumentar reseñas 5 estrellas de 120 a 200 en 3 meses.”

Para saber más sobre OKR puedes ver mi presentación introductoria:

Conociendo OKR - Gazafatonario IT.

También mi artículo: La furia de los OKR - Gazafatonario IT.

Y este otro, donde propongo un modelo en forma de pirámide de cuatro niveles: OKR y la estrategia emergente en la empresa moderna – Lucho Salazar.

Tabla comparativa:

Aspecto

OKR

KPI

Propósito

Generar cambio significativo

Evaluar desempeño sostenido

Horizonte

Temporal, evolutivo, por ciclos, adaptativo

Continuo, estable, de seguimiento

Ambición

Inspiradores, retadores y visionarios

Realistas, específicos y controlables

Naturaleza

Orientados a resultados clave transformacionales

Basados en indicadores constantes y operativos

Usa OKR para mover la aguja, es decir, para provocar movimiento estratégico con metas claras. Usa KPI para saber si la aguja vibra, o sea, para observar estabilidad operativa y mantener el pulso del negocio.

Modelos de madurez: El mapa no es el territorio, pero ayuda a cruzarlo

Los modelos de madurez describen etapas progresivas en áreas clave como liderazgo, tecnología, cultura, procesos, agilidad y capacidades de aprendizaje organizacional. Aunque no sustituyen la realidad, ofrecen una guía clara para comprenderla y diseñar un camino evolutivo sostenible.

Ejemplo simple:

  • Nivel 1: El equipo depende de un solo experto. Todo es manual.
  • Nivel 3: Hay roles claros, automatización básica y retrospectivas frecuentes.
  • Nivel 5: Uso de IA para toma de decisiones, aprendizaje continuo y cultura de datos.

Usos recomendados:

  • Diagnóstico inicial en procesos de transformación digital o cultural.
  • Diseño y planificación de programas de mejora continua.
  • Identificación de obstáculos estructurales, tecnológicos o culturales.

Advertencia: No se trata de llegar al nivel máximo por ego. Se trata de estar en el nivel adecuado para el valor que deseas entregar, esto es, que mejor potencie el impacto esperado y que sea sostenible. Pero más importante, cuando se trate de modelos de madurez, no subestimes tu poder humano, y “humanizante”, de pensar

Sincronización inteligente: OKR + KPI + Madurez = Síntesis operativa

Pensemos en esto como una orquesta:

  • Los KPI son los sensores del sistema. Nos dicen si estamos vivos.
  • Los OKR son las partituras. Nos dicen hacia dónde queremos ir.
  • El modelo de madurez es el manual del instrumento. es el conocimiento técnico, permite saber si estamos tocando con competencia o aún estamos en aprendizaje.

Ejemplo combinado:

  • Modelo de madurez indica que el equipo está en Nivel 2 en "automatización".
  • KPI: Tasa de errores poslanzamiento = 12 %.
  • OKR: Objetivo: Reducir los errores por despliegue. Resultado Clave: Aumentar pruebas automatizadas de 25 % a 70 % en 3 meses.

Entra la inteligencia artificial como motor de evolución ágil

Los equipos ágiles de alto rendimiento ya están incorporando herramientas de inteligencia artificial para aumentar su capacidad adaptativa y su velocidad de entrega.

Aplicaciones actuales:

  • Predicción de riesgos en ciclos de entrega.
  • Recomendaciones automáticas para priorización de tareas y funcionalidades.
  • Automatización de tareas técnicas y de pruebas repetitivas.

Un caso que ya volvimos “típico” es el de los equipos que utilizan IA para identificar historias de usuario duplicadas o de bajo valor en el backlog, ahorrando un porcentaje de tiempo significativo de refinamiento en cada sprint. En este escenario, la métrica asociada es la reducción mensual de historias descartadas después de haber sido priorizadas.

Y como siempre, aunque ya suene a cliché, toca decirlo, por el estrés que está causando la incorporación de la IA en nuestras vidas, sobre todo en el trabajo: La IA no reemplaza al equipo; lo aumenta, lo potencia, mejora su capacidad de análisis y libera tiempo para tareas de mayor impacto.

Errores comunes (y cómo evitarlos)

No me voy a andar por las ramas, seguimos cometiendo muchos errores cuando de métricas, OKR, KPI y modelos de madurez se trata. Por eso escribí La furia de los OKR - Gazafatonario IT. Además de lo que mencioné allí, aquí hay solo algunos otros:

  1. Confundir resultados clave con tareas: Un resultado clave debe ser un cambio observable y cuantificable, no simplemente la ejecución de una acción.
  2. Enamorarse de métricas vanidosas: No basta con medir visitas a una web; hay que medir si esas visitas se traducen en conversiones o valor real.
  3. Usar solo encuestas para medir madurez: Combina percepciones subjetivas con datos y evidencias objetivas.
  4. Definir KPI sin una línea base: Sin un punto de partida, es imposible saber si estamos avanzando o retrocediendo.
  5. Copiar modelos ajenos sin adaptación al contexto: Cada organización tiene su cultura, mercado y desafíos. Ajusta cualquier modelo antes de adoptarlo.

Conclusión y llamado a la acción

Mide lo que transforma, no solo lo que cuenta. La agilidad no se define por la velocidad o la cantidad de entregas, sino por la capacidad de aprender, adaptarse y evolucionar de forma continua. Las métricas, los OKR, los KPI y los modelos de madurez forman un sistema interconectado que permite traducir aspiraciones estratégicas en acciones concretas, medibles y sostenibles.

Te invito a:

  • Establecer al menos un OKR estratégico por trimestre que oriente el cambio.
  • Monitorear de manera constante tres KPI clave que reflejen la estabilidad operativa.
  • Evaluar periódicamente tu madurez organizacional en cinco dimensiones esenciales.
  • Explorar cómo integrar herramientas de inteligencia artificial en tus flujos de trabajo y procesos de decisión.

No lo olviden, la madurez se alcanza cuando medimos para evolucionar, no solo para controlar. ¿Algo más? Por favor, déjamelo saber en el foro.


Post scriptum

Puedes escuchar una explicación sucinta de todo esto en mi podcast gracias a los amigos de Google NotebookLM.


Y puedes ver y descargar la presentación que hiciera hace poco. Con más ejemplos y datos. Y donde presento dos modelos de madurez para nuestro tiempo, uno para equipos y organizaciones y otro para personas, "De Novatos a Nindō (忍道)".


jueves, mayo 15, 2025

El Poder del “¿Y si…?”

 𝗘𝗹 𝗽𝗼𝗱𝗲𝗿 𝗱𝗲𝗹 “¿𝗬 𝘀𝗶…?”


Esta semana, en una reunión de trabajo con un cliente potencial, la dinámica era un déjà vu corporativo: presentación predecible, acuerdos tibios, nadie saliéndose del libreto. Sin pensarlo mucho, quizás impulsado esa curiosidad innata que siempre he tenido, lancé un: “¿Y si en lugar de cerrar esto aquí invitamos a tu cliente a decidir con nosotros en vivo?”. Silencio. Pero sentí que esta vez era distinto. Fue un silencio que hacía espacio. Me di cuenta de que era un silencio que abría puertas.


Y es que, en medio de la rutina laboral, entre informes, entregables y reuniones, hay una pregunta que puede abrir grietas en la lógica establecida: “¿Y si…?”. Dos palabras que son una llave maestra. Porque donde el procedimiento dice "así se hace", el ¿y si...? dice "¿por qué no diferente?".


Vivimos ahogados en eficiencia. Se premia la repetición que funciona, el camino probado. Pero eso también construye ceguera. La costumbre se convierte en trinchera. Es ahí donde el “¿y si…?” funciona como un bisturí: corta la inercia, descompone lo obvio y deja al descubierto posibilidades que nadie ve porque todos están mirando igual.


En mi experiencia, pocas frases generan tanto silencio incómodo en una sala como un “¿y si…?” bien lanzado. Es una bomba chiquita que detona certezas. ¿Y si los clientes diseñaran el producto con nosotros? ¿Y si los lunes fueran sagrados para no tener reuniones? ¿Y si la competencia no fuera amenaza sino insumo?


Es el equivalente a ese colega o socio que, justo cuando crees que ya finalizaron un trabajo, cuando hay una versión final del producto, dice: “¿Y si probamos otro enfoque?”. Al principio irrita. Luego ilumina. Porque la mayoría de las soluciones memorables nacieron de un deslizamiento: alguien se salió del carril.


La analogía es simple: piensa en un escritorio de oficina. Siempre ordenado igual. Los lapiceros a la izquierda, el cuaderno al centro, la taza de café al borde derecho. Ahora, un día, alguien mueve todo de sitio. Y sin darte cuenta, te obliga a mirar de nuevo, a adaptarte, a reevaluar lo que dabas por sentado. Eso es el “¿y si…?”: reordenar el escritorio mental.


Hazlo costumbre. Una vez al día. Al revisar un proceso, al liderar una conversación, al evaluar una decisión. Pregunta: “¿Y si lo hiciéramos al revés? ¿Y si quitamos esto? ¿Y si lo hacemos más simple?”. No siempre cambiarás el mundo, pero entrenarás tu mirada para encontrar lo que otros pasan por alto.


El ‘¿y si…?’ es la primera contracción de una idea viva. No grita, no empuja, no impone. Susurra. Pero si la escuchas, puede partir tu mundo en antes y después.

jueves, marzo 27, 2025

La sobrecarga de la IA: Entre el hype, la desinformación y la infoxicación

 

Atención es todo lo que necesitas. Parece algo de sentido común y además algunos sabrán exactamente a qué me refiero con esa expresión. IA es la sigla del momento y con toda la razón. Era lo que estábamos esperando, algunos de nosotros incluso desde hace décadas.

Pero lo que está ocurriendo es arrollador. Si estás leyendo esto seguramente también estás siendo bombardeado vía redes sociales con titulares como:

“70 ChatGPT prompts para optimizar tu perfil de LinkedIn”

“7000+ cursos de IA GRATIS. ¡Accede ahora!”

“30+ Cheat Sheets definitivas para dominar la IA”

“37 ChatGPT prompts poderosos para ayudarte”

“28 prompts that can save you thousands of dollars”

“20 habilidades de aprendizaje con ChatGPT”

 “La IA no te reemplazará, pero quien sepa usarla SÍ”

También están las llamadas “Cheat Sheets”, infográficos con docenas o cientos de formas, conveniencias, modos, maneras, condiciones, conductas, procederes y tácticas para hacer las cosas con IA. Imágenes extremadamente complejas para el ser humano convencional. (Regresar a ver la portada).

Y no es ciencia ficción. Es nuestra realidad diaria en el mundo digital. La inteligencia artificial (que, a propósito, en español se escribe con minúsculas) está en boca de todos y, lo que es más preocupante, en las publicaciones de todos. ¡Los números son realmente descomunales!

No se trata de que la IA sea una moda pasajera. Es una revolución en marcha, una de las más impactantes de nuestra era, sino la más. Pero la forma en que se nos está vendiendo es, por decirlo de alguna manera, abrumadora. No es que haya 3 herramientas útiles para mejorar tu productividad, sino 50. No son 5 estrategias, sino 1000+. No se trata de aprender con calma, sino de devorar cantidades monumentales de información, como si el simple acto de consumir nos volviera expertos.

La Infodemia de la IA

La sobreexplotación del discurso sobre la IA tiene un efecto claro: genera ansiedad. La avalancha de información, consejos, cursos, prompts, plugins y "secretos" produce un efecto contrario al deseado. En vez de empoderarnos, nos paraliza.

Algunos amigos me han confesado que no pueden dormir debido a ello. Si eres un CEO o similar seguramente tu nivel de estrés haya sobrepasado máximos históricos. Muchos se sienten abrumados, incapaces de ponerse al día con la marea de supuestos conocimientos imprescindibles. La paradoja es evidente: el exceso de información produce desinformación. Con cada nueva "cheat sheet", con cada "curso definitivo", con cada "descubrimiento revolucionario", con cada nueva versión del chatbot de la semana, el usuario promedio queda atrapado en un círculo vicioso de aprendizaje sin aplicación real.

La falacia del experto instantáneo

El otro gran problema es la proliferación de "gurús de la IA". LinkedIn, X y mucho de la Internet que transitamos están plagadas de autoproclamados expertos quienes parecen haber descubierto el Santo Grial de la inteligencia artificial.

¿Han probado las herramientas que promocionan? ¿Han seguido alguno de los procesos que proclaman? ¿O simplemente están repitiendo lo que vieron en otro post viral? Yo no lo sé de cierto, lo supongo. La IA, como cualquier otra disciplina, requiere estudio, experimentación y un profundo conocimiento del contexto. No se trata de memorizar "los 42 prompts definitivos", sino de comprender cómo y por qué funcionan.

Cómo sobrevivir a la sobrecarga de IA

Ante este tsunami informativo propio de tabloides más que de ciencia e ingeniería, te quiero dar algunos consejos esenciales:

1.      Ve a tu ritmo: No intentes absorberlo todo en un día. La IA es una herramienta poderosa, pero su dominio requiere tiempo. Evita los cursos "exprés" que prometen convertirte en experto en "3 minutos al día".

2.      Acompáñate de verdaderos expertos: Busca mentores que hayan recorrido el camino antes que tú, que puedan guiarte con conocimiento real y no con humo digital.

3.      No te agobies: Siempre habrá alguien más adelante y alguien más atrás. Aprende de los primeros y ayuda a los segundos. La IA no es una competencia de velocidad; es una carrera de fondo.

4.      Filtra el contenido con criterio: En un entorno sobresaturado de información, aprender a discriminar fuentes confiables de aquellas que solo buscan generar clics y engagement es crucial. Pregúntate: ¿esta información proviene de una fuente académica o empresarial con respaldo? ¿El contenido tiene profundidad o solo repite lo que otros dicen?

5.      Evita el FOMO (miedo a quedarse atrás): La IA avanza rápido, sí, pero la presión por estar siempre actualizado puede ser contraproducente. Define tu propia cadencia de aprendizaje y enfócate en aquello que realmente aporte valor a tu crecimiento personal y profesional.

Llamado a la acción

El ritmo con el que se está propagando la información sobre IA es avasallador, intimidante, abusivo y, en muchos casos, irresponsable. Quizás nunca estemos a la vanguardia, pero la pregunta es: ¿realmente quieres estarlo?

Piensa en ello antes de dar clic en la próxima lista de "100 herramientas de IA que cambiarán tu vida". Quizás lo que realmente cambie tu vida sea aprender a priorizar lo que importa y avanzar con pasos firmes, en vez de correr sin rumbo en una maratón sin fin.

lunes, febrero 17, 2025

Sprints inteligentes: ¿cómo la IA potencia la toma de decisiones con Insights basados en datos?

Sprints inteligentes: ¿cómo la IA potencia la toma de decisiones con Insights basados en datos?


En el artículo anterior, “Más allá del sprint: ¿Por qué la IA está revolucionando la agilidad y poniendo el mundo empresarial de cabeza?” exploramos a grandes rasgos cómo es posible integrar la IA a nuestra práctica ágil tradicional. Hoy vamos a examinar con algo más de detalle cómo mejorar la toma de decisiones con información basada en datos.

Y es que, hoy por hoy, tomar decisiones informadas es más crítico que nunca. Los equipos ágiles avanzan gracias a iteraciones rápidas y a la mejora continua, pero para sobresalir realmente, necesitan algo más que intuiciones o corazonadas: requieren puntos de vista basados en datos. Los equipos pueden optimizar sus procesos de toma de decisiones aprovechando el poder de la Inteligencia Artificial (IA) para procesar enormes volúmenes de información, asegurándose de generar el mayor valor posible en cada sprint.

El papel fundamental de los datos en la toma de decisiones ágiles

Los equipos ágiles fundamentan todo su trabajo en el desarrollo iterativo y en la retroalimentación continua. Tradicionalmente, los equipos ágiles confiaban en revisiones periódicas, sesiones de retroalimentación con clientes y reuniones retrospectivas para orientar sus decisiones. Sin embargo, estos métodos, aunque valiosos, a menudo presentan retrasos inherentes y pueden pasar por alto cambios sutiles en el comportamiento de los usuarios. Con la explosión de datos digitales—desde clics y tiempos de sesión hasta el sentimiento en redes sociales y dinámicas del mercado—las organizaciones ahora disponen de herramientas que les permiten acceder a perspectivas en tiempo real capaces de influir drásticamente en la toma de decisiones.

La toma de decisiones basada en datos transforma la manera en que los equipos ágiles priorizan las historias de usuario y refinan su backlog de producto. Si además integran analítica con IA en sus procesos, los equipos pueden examinar muchos datos para detectar patrones y tendencias que de otro modo pasarían desapercibidos. Por ejemplo, una plataforma de comercio electrónico podría analizar los datos de navegación de sus usuarios para identificar en qué punto del proceso de compra se abandonan los carritos. En lugar de esperar a recibir retroalimentación anecdótica, el equipo ágil obtiene insights inmediatos y cuantificables que impulsan la planificación de un sprint cuyo objetivo sea resolver ese problema. Este enfoque minimiza el esfuerzo desperdiciado y garantiza que cada ciclo de desarrollo esté alineado con las verdaderas necesidades del usuario.

Además, los insights basados en datos permiten a los equipos predecir tendencias futuras en lugar de simplemente reaccionar a comportamientos pasados. En un entorno ágil, donde cada sprint es una oportunidad de aprendizaje, la capacidad de anticipar las necesidades de los clientes puede marcar la diferencia. Los algoritmos de IA pueden pronosticar tendencias al comparar las interacciones actuales de los usuarios con datos históricos, proporcionando una capa predictiva a la toma de decisiones. Esta capacidad predictiva no solo acelera el ciclo de desarrollo, sino que también reduce el riesgo de invertir en características que podrían no aportar el valor esperado. La integración de la IA convierte los datos en un activo estratégico, empoderando a los equipos ágiles para tomar decisiones oportunas y efectivas.

Cómo la IA transforma los datos en Insights accionables

En el núcleo de la toma de decisiones mejorada mediante IA se encuentra la habilidad de procesar y analizar datos a gran escala. Los sistemas modernos de IA utilizan algoritmos de aprendizaje automático para examinar vastos conjuntos de datos, identificando tendencias y anomalías que los analistas humanos podrían pasar por alto. Estos sistemas operan en tiempo real, actualizando continuamente sus modelos basándose en nuevos datos, lo que garantiza que los insights sean siempre actuales y relevantes. Para los equipos ágiles, esto significa que cada decisión—desde la planificación del sprint hasta la priorización de historias de usuario—puede respaldarse con datos concretos y actualizados.

Veamos un escenario en el que un equipo de desarrollo de software trabaja en una nueva funcionalidad para una aplicación móvil. Tradicionalmente, el equipo podría depender de retroalimentación esporádica de los usuarios o de unas pocas encuestas para evaluar el impacto de la funcionalidad. Sin embargo, al incorporar analíticas impulsadas por IA, el equipo puede monitorear continuamente las interacciones de los usuarios. Por ejemplo, el sistema de IA podría revelar que los usuarios abandonan la nueva funcionalidad poco después de iniciarla. Con ese insight, el equipo puede investigar más a fondo, identificar posibles problemas de usabilidad y ajustar su plan de desarrollo en el siguiente sprint. Esta respuesta rápida e informada por datos reduce el tiempo improductivo y mejora la calidad general del producto.

Más allá de los ajustes reactivos, la IA ofrece recomendaciones proactivas. Cuando analizan datos históricos y tendencias actuales, las herramientas de IA pueden predecir cuáles características o correcciones tendrán el mayor impacto en la satisfacción del usuario. Esto no solo mejora la calidad del producto final, sino que también optimiza el proceso de toma de decisiones. Los equipos ágiles ya no tienen que depender únicamente de evaluaciones subjetivas; en su lugar, pueden utilizar los insights generados por la IA para validar sus estrategias y priorizar iniciativas respaldadas por datos sólidos. El resultado es un proceso de desarrollo más eficiente, ágil y centrado en el cliente.

En el ámbito de los servicios financieros, por ejemplo, los equipos ágiles pueden utilizar la IA para mejorar la toma de decisiones en la gestión de riesgos y en la atención al cliente. Por ejemplo, un banco podría implementar un sistema basado en IA para analizar datos de transacciones y detectar actividades fraudulentas. Este sistema monitorea continuamente el comportamiento de los clientes y alerta en tiempo real ante anomalías. Cuando se detecta una actividad sospechosa, el equipo ágil puede movilizarse rápidamente para investigar y mitigar posibles riesgos. Esto no solo protege los activos del banco, sino que también refuerza la confianza del cliente. Además, la IA puede ofrecer una visión clara sobre los hábitos de gasto de los clientes, ayudando al banco a personalizar sus servicios y productos para satisfacer mejor las necesidades de sus usuarios.

Beneficios y desafíos de la toma de decisiones basada en datos

Beneficios

En primer lugar, mejora la velocidad y la precisión en la toma de decisiones. Los equipos ágiles pueden identificar y abordar rápidamente los problemas, asegurando que el producto evolucione conforme a las expectativas de los usuarios. Esto no solo eleva la calidad del producto final, sino que también acelera el tiempo de salida al mercado—una ventaja crítica en el panorama competitivo actual.

Además, las perspectivas basadas en datos fomentan una cultura de transparencia y responsabilidad. Cuando las decisiones se respaldan con datos concretos, resulta más fácil justificar cambios y asignaciones de recursos. Este enfoque objetivo minimiza los conflictos internos y alinea al equipo en torno a metas claras y medibles. La capacidad de predecir tendencias y anticipar las necesidades del cliente conduce a un proceso de desarrollo más proactivo, lo que proporciona a las empresas una ventaja estratégica frente a la competencia.

Desafíos

Uno de los principales obstáculos es la calidad de los datos. Para que la IA genere insights confiables, los datos subyacentes deben ser precisos, completos y estar libres de sesgos. Una mala calidad en los datos puede llevar a conclusiones erróneas y a esfuerzos mal direccionados, lo que en última instancia puede dañar tanto el producto como la reputación de la organización.

Otro desafío importante es el cambio cultural necesario para adoptar la toma de decisiones basada en datos. Los equipos ágiles acostumbrados a confiar en la intuición y en mecanismos tradicionales de retroalimentación pueden mostrar resistencia al cambio hacia un enfoque más analítico. Esta resistencia se puede superar mediante la educación y la capacitación, demostrando éxitos incrementales que pongan de relieve los beneficios de la integración de la IA. Además, las organizaciones deben invertir en la infraestructura y en las herramientas necesarias para recolectar, procesar y analizar datos de manera efectiva. Aunque esta inversión puede resultar significativa, los beneficios a largo plazo en términos de eficiencia e innovación suelen justificar los costos iniciales.

Tendencias futuras e implicaciones estratégicas

Apostamos por una integración aún más profunda de la IA con la agilidad, una en la que la IA no solo analiza datos, sino que también sugiere cambios estratégicos, predice variaciones del mercado e incluso automatiza partes del proceso de toma de decisiones. Por ejemplo, ya estamos explorando tecnologías emergentes de IA que nos permitan experimentar con la planificación autónoma de sprints, donde el sistema recomienda el conjunto óptimo de historias de usuario a abordar en función de datos en tiempo real y analíticas predictivas.

Desde un punto de vista estratégico, las organizaciones que inviertan en prácticas ágiles basadas en datos impulsadas por IA estarán mejor posicionadas para navegar en el maremágnum mercantil de hoy. Estas empresas podrán adaptarse rápidamente a las demandas cambiantes de los clientes, minimizar riesgos y aprovechar oportunidades que la competencia podría pasar por alto. La exitosa fusión de la IA y las prácticas ágiles se convertirá en un diferenciador crítico, sentando las bases para la próxima generación de transformación digital.

Además, a medida que las tecnologías de IA se vuelvan más sofisticadas, la colaboración entre la creatividad humana y la precisión de la máquina se profundizará. El papel de los equipos ágiles evolucionará hacia una integración en la que datos e intuición se combinen de manera armoniosa, llevando a un enfoque equilibrado que aproveche las fortalezas tanto del análisis humano como del automatizado. Esta relación simbiótica está destinada a redefinir la innovación y la eficiencia en múltiples industrias.

No, ya pasamos hace rato el punto de no retorno. No es posible avanzar en el camino que supone la agilidad sin el soporte de una herramienta tan poderosa como la inteligencia artificial. ¿Ya lo estás haciendo en tu equipo u organización?